Сведения об аттестованных методиках измерений ФХС природного газа и сжиженных углеводородных газов

№ п/п	Стандарт	Наименование МИ	Номер и дата свидетельства об аттестации	Номер в ФИФ	Разработчик
Приј	родный газ				
1.	ΓΟCT 34718- 2021	Газ природный. Пикнометрический метод определения плотности	№ 39/РОСС RU.0001.310294-2020 от 20 февраля 2020 г.	ФР.1.31.2020.36980	ООО «Газпром ВНИИГАЗ»
2.	ΓΟCT 34704- 2020	Газ природный. Определение метанового числа	№ 42/РОСС RU.0001.310294–2020 от 25 февраля 2020 г.	ФР.1.31.2020.37010	ООО «Газпром ВНИИГАЗ»
3.	ΓΟCT 20060- 2021	Газ природный. Определение температуры точки росы по воде	№ 43/РОСС RU.0001.310294–2020 от 27 марта 2020 г.	ФР.1.31.2020.37177	ООО «Газпром ВНИИГАЗ»
4.	ΓΟCT 20061- 2021	Газ природный. Определение температуры точки росы по углеводородам	№ 44/РОСС RU.0001.310294–2020 от 27 марта 2020 г.	ФР.1.31.2020.37178	ООО «Газпром ВНИИГАЗ»
5.	ΓΟCT 34711- 2021	Газ природный. Определение массовой концентрации водяных паров титриметрическим методом К. Фишера	№ 46/РОСС RU.0001.310294–2020 от 28 мая 2020 г.	ΦΡ.1.31.2020. 37526	ООО «Газпром ВНИИГАЗ»
6.	ΓΟCT 34711- 2021	Газ природный. Определение массовой концентрации водяных паров кулонометрическим методом К. Фишера	№ 47/РОСС RU.0001.310294–2020 от 28 мая 2020 г.	ФР.1.31.2020.37178	ООО «Газпром ВНИИГАЗ»
7.	ΓΟCT 34712- 2021	Газ природный. Определение общей серы методом ультрафиолетовой флуоресценции	№ 45/РОСС RU.0001.310294–2020 от 18 июня 2020 г.	ФР.1.31.2020.37642	ООО «Газпром ВНИИГАЗ»
8.	ΓΟCT 22387.2- 2021	Газы горючие природные. Методы определения сероводорода и меркаптановой серы.	№ 242/8–2010 от 25.02.2010	ФР.1.31.2016.22333	ООО «Газпром ВНИИГАЗ»

№ п/п	Стандарт	Наименование МИ	Номер и дата свидетельства об аттестации	Номер в ФИФ	Разработчик
9.	ГОСТ 31371.7- 2020	Методика измерений молярной доли компонентов природного газа методом газовой хроматографии	№ 1057/207- (RA.RU.310494) -2019 от 15.02.2019	ФР.1.31.2019.33714	ФГУП «ВНИИМ им. Д.И. Менделеева»
10.	ГОСТ 31371.7- 2020	Методика измерений молярной доли компонентов природного газа переменного состава и определения физико-химических показателей	№ 739/206-(01.00250)- 2016 от 15.03.2016	ФР.1.31.2017.28235	ФГУП «ВНИИМ им. Д.И. Менделеева»
11.	ΓΟCT 34721- 2021	Методика определения серосодержащих компонентов в природном газе методом газовой хроматографии	№ 2027/207- (RA.RU.310494)-2019 от 27 декабря 2019 года	ФР.1.31.2020.36764	ФГУП «ВНИИМ им. Д.И. Менделеева»
12.	ΓΟCT 34807- 2021	Газ природный. Детальный метод определения температуры точки росы по воде и массовой концентрации водяных паров	№ 50/POCC RU.0001.310294–2021 от 27.07.2021	ФР.1.32.2021.41025	ООО «Газпром ВНИИГАЗ»
13.	ΓΟCT 34807- 2021	Газ природный. Упрощенный метод определения температуры точки росы по воде и массовой концентрации водяных паров	№ 51/POCC RU.0001.310294–2021 ot 27.07.2021	ФР.1.32.2021.41026	ООО «Газпром ВНИИГАЗ»
14.	ГОСТ 35032- 2023	Газ природный. Определение кислорода электрохимическим методом	№ 104/POCC RU.0001.310294–2023	ФР.1.31.2023.46265	ООО «Газпром ВНИИГАЗ»
15.	ГОСТ 35033- 2023	Газ природный. Определение содержания водяных паров сорбционными методами	№ 105/POCC RU.0001.310294–2023	ФР.1.31.2023.46266	ООО «Газпром ВНИИГАЗ»
16.	ГОСТ 35039- 2023	Определение содержания механических примесей в природном газе. Методика измерений массовой концентрации механических примесей гравиметрическим методом	№ 2162/202- (Ra.RU.310494) -2022 от 22.12.2022	ФР.1.31.2023.45278	ФГУП «ВНИИМ им. Д.И. Менделеева»
17.	ГОСТ 35076- 2024	МИ 2414/02-2023 «Методика измерений объёмной теплоты сгорания природного газа с применением калориметра сжигания с бомбой»	№ 2190/202- (RA.RU.310494) -2023	ФР.1.32.2023.46800	ФГУП «ВНИИМ им. Д.И. Менделеева»

№ п/п	Стандарт	Наименование МИ	Номер и дата свидетельства об аттестации	Номер в ФИФ	Разработчик
Сжи	эженные углеводор	оодные газы			
18.	ГОСТ 10679- 2019	Газы углеводородные сжиженные. Определение углеводородного состава методом газовой хроматографии. Методика (метод) измерений	01.00257-2013/1006-18 от 6 февраля 2018 г.	ФР.1.31.2018.29844	АО «ВНИИУС»
19.	ГОСТ 28656- 2019	Газы углеводородные сжиженные. Определение избыточного давления насыщенных паров на основе данных о компонентном составе. Методика (метод) измерений	01.00257-2013/1806-18 от 2 марта 2018 г.	ФР.1.31.2018.30074	АО «ВНИИУС»
20.	ГОСТ 28656- 2019	Газы углеводородные сжиженные. Определение плотности на основе данных о компонентном составе. Методика (метод) измерений	01.00257-2013/1706-18 от 2 марта 2018 г.	ФР.1.31.2018.30043	АО «ВНИИУС»
21.	ΓΟCT 34429- 2018	Газы углеводородные сжиженные. Определение давления насыщенных паров. Методика (метод) измерений	01.00257-2013/1006-18 от 6 февраля 2018 г.	ФР.1.31.2018.29843	АО «ВНИИУС»
22.	ГОСТ 22985- 2017	Газы углеводородные сжиженные, широкая фракция легких углеводородов и газы нефтепереработки. Измерение массовой доли сероводорода, меркаптановой серы и серооксида углерода. Методика (метод) измерений	01.00257-2013/10306-17 от 25 июля 2017	ФР.1.31.2017.27319	АО «ВНИИУС»
23.	ГОСТ 34858- 2022 (приложение В)	Газы углеводородные сжиженные топливные. Определение объемной доли жидкого остатка. Методика (метод) измерений	01.00257-2013/16706-17 от 8 декабря 2017 г.	ФР.1.31.2018.29002	АО «ВНИИУС»
24.	ГОСТ 34858- 2022 (приложение Д)	Газы углеводородные сжиженные топливные. Определение октанового числа. Методика (метод) измерений	01.00257-2013/16806-17 от 8 декабря 2017 г.	ФР.1.31.2018.29003	АО «ВНИИУС»

№ п/п	Стандарт	Наименование МИ	Номер и дата свидетельства об аттестации	Номер в ФИФ	Разработчик
25.	ГОСТ 35228- 2024	Газы углеводородные сжиженные. Определение серосодержащих соединений методом газовой хроматографии	№ RA.RU.313391/7506- 24 от 24 сентября 2024 г.	ФР.1.31.2024.49586	АО «ВНИИУС»
26.	ΓΟCT 14920- 2024	Газы нефтепереработки и газопереработки, попутные нефтяные газы. Определение компонентного состава методом газовой хроматографии. Методика (метод) измерений	№ RA.RU.313391/3906- 23 от 19.04.2023	ФР.1.31.2023.45867	АО «ВНИИУС»
27.	В ГОСТ 34858- 2022 по показателям «Массовая доля	Газы углеводородные сжиженные топливные. Определение массовой доли индивидуальных серосодержащих соединений методом газовой хроматографии. Методика (метод) измерений	01.00257-2013/8906-20 от 20 августа 2020 г.	ФР.1.31.2020.37947	АО «ВНИИУС»
28.	общей серы» и «Массовая доля сероводорода и меркаптановой серы» ссылка на МИ в качестве метода испытания	Газы углеводородные сжиженные топливные. Определение массовой доли меркаптановой и общей серы на основе данных о компонентном составе. Методика (метод) измерений	01.00257-2013/10606-21 от 24 августа 2021 г.	ФР.1.29.2021.40985	АО «ВНИИУС»